ZrO2 Is Preferred over TiO2 as Support for the Ru-Catalyzed Hydrogenation of Levulinic Acid to γ‐Valerolactone

نویسندگان

  • Jamal Ftouni
  • Ara Muñoz-Murillo
  • Andrey Goryachev
  • Jan P. Hofmann
  • Emiel J. M. Hensen
  • Li Lu
  • Christopher J. Kiely
  • Pieter C. A. Bruijnincx
  • Bert M. Weckhuysen
چکیده

Catalyst stability in the liquid phase under polar conditions, typically required for the catalytic conversion of renewable platform molecules, is a major concern but has been only sparsely studied. Here, the activity, selectivity, and stability of Ru-based catalysts supported on TiO2, ZrO2, and C in the conversion of levulinic acid (LA) to γ-valerolactone (GVL) has been studied at 30 bar of H2 and 423 K in dioxane as solvent. All catalysts showed excellent yields of GVL when used fresh, but only the Ru/ZrO2 catalyst could maintain these high yields upon multiple recycling. Surprisingly, the widely used Ru/TiO2 catalyst showed quick signs of deactivation already after the first catalytic test. XPS, CO/FT-IR, TGA, AC-STEM, and physisorption data showed that the partial deactivation is not due to Ru sintering or coking but rather due to reduction of the titania support in combination with partial coverage of the Ru nanoparticles, i.e. due to a detrimental strong metal−support interaction. In contrast, the zirconia support showed no signs of reduction and displayed high morphological and structural stability even after five recycling tests. Remarkably, in the fresh Ru/ZrO2 catalyst, Ru was found to be fully atomically dispersed on the fresh catalyst even at 1 wt % Ru loading, with some genesis of Ru nanoparticles being observed upon recycling. Further studies with the Ru/ZrO2 catalyst showed that dioxane can be readily replaced by more benign solvents, including GVL itself. The addition of water to the reaction mixture was furthermore shown to promote the selective hydrogenation reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support Screening Studies on the Hydrogenation of Levulinic Acid to -Valerolactone in Water Using Ru Catalysts

γ-Valerolactone (GVL) has been identified as a sustainable platform chemical for the production of carbon-based chemicals. Here we report a screening study on the hydrogenation of levulinic acid (LA) to GVL in water using a wide range of ruthenium supported catalysts in a batch set-up (1 wt. % Ru, 90 ◦C, 45 bar of H2, 2 wt. % catalyst on LA). Eight monometallic catalysts were tested on carbon b...

متن کامل

Influence of Sulfuric Acid on the Performance of Ruthenium‐based Catalysts in the Liquid‐Phase Hydrogenation of Levulinic Acid to γ‐Valerolactone

The presence of biogenic or process-derived impurities poses a major problem on the efficient catalytic hydrogenation of biomass-derived levulinic acid to γ-valerolactone; hence, studies on their influence on catalyst stability are now required. Herein, the influence of sulfuric acid as feed impurity on the performance of Ru-based heterogeneous catalysts, including Ru/ZrO2 and mono- and bimetal...

متن کامل

Conversion of Levulinic Acid to γ-Valerolactone over Few-Layer Graphene-Supported Ruthenium Catalysts

Few-layer graphene (FLG) supported ruthenium nanoparticle catalysts were synthesized and used for the hydrogenation of levulinic acid (LA), one of the “top 10” biomass platform molecules derived from carbohydrates. FLG-supported ruthenium catalyst showed 99.7% conversion and 100% selectivity toward γ-valerolactone (GVL) at room temperature in a batch reactor under high-pressure hydrogen. This c...

متن کامل

Selective hydrogenation of levulinic acid to γ-valerolactone using in situ generated ruthenium nanoparticles derived from Ru-NHC complexes.

Hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) was studied by using mono- and bidentate p-cymene ruthenium(ii) N-heterocyclic carbene (NHC) complexes as catalyst precursors. In water, all complexes were found to be reduced in situ to form ruthenium nanoparticles (RuNPs) with a high hydrogenation activity. In organic solvents, complexes with monodentate NHC ligands also formed nan...

متن کامل

Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts.

Levulinic acid and its esters are converted to γ-valerolactone over metal oxide catalysts by catalytic transfer hydrogenation via the Meerwein-Ponndorf-Verley reaction.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016